EGC220 Class Notes 2/10/2023

Baback Izadi

Division of Engineering Programs bai@engr.newpaltz.edu

1. Prove by means of truth table that (AB)' = A' + B'

Proved

☐ TABLE 2-6

Basic Identities of Boolean Algebra

1.
$$X + 0 = X$$

2. $X = X$

3. $X + 1 = 1$

4. $X \cdot 0 = 0$

5. $X + X = X$

6. $X \cdot X = X$

7. $X + \overline{X} = 1$

8. $X \cdot \overline{X} = 0$

2.
$$X = X$$

3.
$$X + 1 = 1$$

4.
$$X \cdot 0 = 0$$

$$5. \quad X + X = X$$

$$6. \quad X \cdot X = X$$

7.
$$X + \overline{X} = 1$$

8.
$$X \cdot \overline{X} = 0$$

9.
$$\overline{\overline{X}} = X$$

$$10. \quad X + Y = Y + X$$

11.
$$XY = YX$$

Commutative

12.
$$X + (Y + Z) = (X + Y) + Z$$

13.
$$X(YZ) = (XY)Z$$

$$14. \quad X(Y+Z)=XY+XZ$$

12.
$$X + (Y + Z) = (X + Y) + Z$$
 13. $X(YZ) = (XY)Z$ 14. $X(Y + Z) = XY + XZ$ 15. $(X + Y)Z = (X + Y)(X + Z)$

16.
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

DeMorgan's

2. Circle T (true) or F (false) for each of these Boolean equations. (A+B)(A+c) ABJAB $3A + 1 \neq A$ $A + BC \neq (A + B)(B + C)$ $\overline{A} \oplus \overline{B} = A \oplus B$ $\overline{B} = A \oplus B$ $\overline{B} = A \oplus B$ $\overline{B} = A \oplus B$ $A+B+C=A\cdot B\cdot C$ AtBtc = A.B.C (Btc) > B.C

 $(X \cancel{X} \cancel{Z}) = X + X + \overline{Z}$ X YZ \ (XtYtz)

4. Using AND and OR gates, draw the logic diagrams for the following Boolean expressions without expanding or simplifying them.

hout expanding or simplifying them.

a.
$$Y = (A'+B')C + B(A+C)$$

b.
$$W = (A+B')(C+D')$$

7. Find the dual of
$$A+B$$
 ($B+C$) (B

8. Find the complement of a.
$$F = A^*B + B^*C^* + D^*$$
b. $F(A, B, C) = (A + B)(B + C)$

$$F = A B + B C + D$$

$$F = (A + B)(B + C)$$

$$F =$$

$$\overline{X+Y} = \overline{X} \cdot \overline{Y} = X\overline{Y}$$

$$\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y} = X + Y$$

$$F = \overline{AB} + \overline{ACD} + \overline{B+CD}$$

$$= \overline{(AB)} (\overline{ACD}) (\overline{B}) (\overline{C} + \overline{D})$$

$$(\overline{A+B}) (\overline{A+C+D}) (\overline{B}) (\overline{C} + \overline{D})$$

$$(\overline{A+B}) (\overline{A+C+D}) (\overline{B}) (\overline{C} + \overline{D})$$