EGC220 Class Notes 2/10/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

1. Prove by means of truth table that $(\mathrm{AB})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$

Basic Identities of Boolean Algebra

10.	$X+Y=Y+X$	11. $X Y=Y X$	Commutative
12.	$X+(Y+Z)=(X+Y)+Z$	13. $X(Y Z)=(X Y) Z \subset A \subset C$	Associative
14.	$X(Y+Z)=X Y+X Z$	15.A $X+Y Z=(X+Y)(X+Z)$ 16. $X+Y$ $X+\bar{X} \cdot \bar{Y}$	Distributive
	17. $\overline{X \cdot Y}=\bar{X}+\bar{Y}$	DeMorgan's	

$$
\bar{A}+\bar{B} \neq A+B
$$

2. Circle T (true) or F (false) for each of these Boolean equations.

$$
A B \neq A B
$$

$$
(A+B)(A+C)
$$

(a). $\quad T$ F $(3) A+1 \neq A 1$
(b). $\quad T$ ($\mathrm{F} \quad A+B C \neq(A+B)(B+C)$
(c). I) $F \quad \bar{A} \oplus \bar{B}=A \oplus B$
(d). (I) $F \quad A(B C)=(A B) C$
(de). T (F)

$$
\begin{aligned}
& \text { F } \begin{array}{l}
A+B+C=\underbrace{A \cdot B \cdot C} \\
\bar{A}+B+C \\
\bar{A} \cdot \bar{A} \cdot \bar{B} \cdot \bar{C} \\
\longrightarrow \bar{A} \cdot(\overline{B+C})
\end{array} \overline{\bar{B}} \cdot \bar{C}
\end{aligned}
$$

3. Demonstrate by means of truth tables the validity of the following identities
a. DeMorgan's law for three variables: $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})^{\prime}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}$ and

$$
\begin{aligned}
& \overline{(x \not y z)}=\bar{x}+\bar{y}+\bar{z}
\end{aligned}
$$

含 7)
D
$A \oplus B$

$A B$	$A \Theta B$
0	$A O$
01	0
10	1
1	1
1	0

$$
\begin{aligned}
& x \cdot 1+x y=x(\underbrace{\text { same }}_{1} \\
& x \cdot x+x \cdot y=x
\end{aligned}
$$

4. Using AND and OR gates, draw the logic diagrams for the following Boolean expressions without expanding or simplifying them.

b. $\mathrm{W}=\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)$

5. Write the Boolean expression equivalent to the following logic circuit. Do not simplify! Hint: Each bubble has the same effect as an invertor.

6. Find the dual of $(\bar{A}+\bar{B}),(\bar{B}+\bar{C}), \bar{D})$
a. $\mathrm{F}=(\mathrm{A}, \mathrm{B})+\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}+(\bar{D})=(\bar{A}+B)(\overline{\mathrm{B}}+\overline{\mathrm{C}})(\overline{\mathrm{D}})\right.$
b. $F(A, B, C)=(\overline{A+B})(B+\bar{C})$

$$
\begin{aligned}
& F=(A \bar{B} C)+D \\
& (A+\bar{B}+C) \cdot D
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{F}=\overline{(\overline{A+B})})(B+\bar{C}
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\bar{x}+y}=\overline{\bar{x}}, \bar{y}=x \bar{y} \\
& \overline{x_{j} \bar{y}}=\bar{x}+\bar{y}=\bar{x}+y
\end{aligned}
$$

$$
\begin{aligned}
\bar{F}= & \overline{A \bar{B}}+\bar{A} C D+\bar{B}+\bar{C} D \\
= & \overline{(\overline{A B})} \mid \overline{(\bar{A} C D})(\bar{B})(\bar{C} \bar{C} D) \\
& \downarrow \\
& (\bar{A}+\overline{\bar{B}})(\overline{\bar{A}}+\bar{C}+\bar{D})(\bar{B})(\bar{C}+\bar{D}) \\
& (\bar{A}+B)(A+\bar{C}+\bar{D})(\bar{B})(C+\bar{D})
\end{aligned}
$$

